
Service Design Principles

This extract is intended for quick reference purposes
only. For complete treatment, refer to the source:

Erl, Thomas. SOA Principles of Service Design. New
Jersey: Prentice Hall, 2007

B
u

si
n

es
s

P
ro

ce
ss

Se

rv
ic

es

Service Models

U
ti

lit
y

Se
rv

ic
es

B
u

si
n

es
s

En
ti

ty

Se
rv

ic
es

Services can be categorized based on the type of logic they encapsulate, the
extent of reuse potential this logic has, and how this logic relates to existing
domains within the enterprise.

While these layers tend to form a natural composition hierarchy, there are no hard-
and-fast rules as to how services can be assembled.

Service Model Descriptions

• Representative of a specific “parent” business task or process (e.g., BillPayment)

• Typically a controller responsible for composing more process-agnostic Business Entity Services

• Somewhat less reuse potential because of coupling to specific functional context

• May be implemented as an orchestration within an orchestration platform

Business Process Service
aka Task Services, Task-Centric Business Services, or Orchestrations

• Representative of the organization’s business entities (e.g., subscriber, payment, e-Bill)

• Highly reusable because it is agnostic to most parent business processes

• A single Business Entity Service can be leveraged to automate multiple parent business processes

Business Entity Service
aka Entity Services or Entity-Centric Business Services

• Non-business-centric, providing distinct, technology-oriented services.

• Provides reusable, cross-cutting utility functionality such as event logging, notification, and
exception handling.

• Application agnostic but focused on a specific processing context.

Utility Service
aka Application Services, Infrastructure Services, or Technology Services

Service Design Principles

A Design Principle represents a highly recommended guideline for shaping
solution logic in a certain way and with certain goals in mind.

Reusable

Autonomy

Loosely
Coupled

Discover-
able

Stateless Compos-
able

Abstract

Standard
Contract

Standard Service Design Principles

• Standardized Service Contract

• Service Loose Coupling

• Service Abstraction

• Service Reusability

• Service Autonomy

• Service Composability

• Service Statelessness

• Service Discoverability

Service Design Principles

• Services within the same service inventory are in compliance with the same contract design
standards

Standardized Contract
Implement a standardized contract

• Service contracts impose low consumer coupling requirements and are themselves decoupled
from their surrounding environment

Loose Coupling
Minimize dependencies

• Service contracts only contain essential information and information about services is limited
to what is published in service contracts

Abstraction
Minimize the availability of meta information

• Services contain and express agnostic logic and can be positioned as reusable enterprise
resources

Reusability
Implement generic and reusable logic and contract

Service Design Principles

• Services exercise a high level of control over their underlying runtime execution environment

Autonomy
Implement independent functional boundary and runtime environment

• Services are effective composition participants, regardless of the size and complexity of the
composition

Composability
Maximize composability

• Services minimize resource consumption by deferring the management of state information
when necessary

Statelessness
Implement adaptive and state management-free logic

• Services are supplemented with communicative meta data by which they can be effectively
discovered and interpreted

Discoverability
Implement communicative meta information

Service Role - Contracts

“Express my purpose and
capabilities consistently.”

The fundamental role of this principle is to ensure consistent expression of
the overall purpose and capabilities of the service.

Service Profile - Contracts

Services share standardized contracts.Short Definition

Services within the same service inventory are in compliance with the same contract
design standards.

Long
Definition

• To enable services with a meaningful level of natural interoperability within the
boundary of a service inventory. This reduces the need for data transformation
because consistent data models are used for information exchange.

• To allow the purpose and capabilities of services to be more easily and intuitively
understood. The consistency with which service functionality is expressed
through service contracts increases interpretability and the overall predictability
of service endpoints throughout a service inventory.

These goals are further supported by other service design principles.

Goals

• A Service Contract (comprised of a technical interface or one or more service
description documents) is provided with the Service.

• The Service Contract is standardized through the application of design standards.

Design
Characteristics

Service Region Influence - Contracts

The Contracts principle influences the Service Contract.

Service Role - Coupling

“Consumer programs that
call me should not need to
form tight dependencies.”

“I don’t want to form tight
dependencies on services

that I call”

“I want to minimize
dependencies on my

underlying implementation
environment.”

X

XX

X

This principle emphasizes the reduction (“loosening”) of coupling between the
parts of a service-oriented solution, especially when compared to how
applications have traditionally been designed. Specifically, loose coupling is
advocated between a service contract and its consumers and between a service
contract and its underlying implementation.

Service Profile - Coupling

Services are loosely coupled.Short Definition

Service contracts impose low consumer coupling requirements and are themselves
decoupled from their surrounding environment.

Long
Definition

• By consistently fostering reduced coupling within and between services we are
working toward a state where service contracts increase independence from
their implementations and services are increasingly independent from each
other.

• This promotes an environment in which services and their consumers can be
adaptively evolved over time with minimal impact on each other.

Goals

• The existence of a Service Contract that is ideally decoupled from technology and
implementation details.

• A functional service context that is not dependent on outside logic.
• Minimal consumer coupling requirements.

Design
Characteristics

Service Region Influence - Coupling
The Coupling principle primarily influences the Service Contract, and
certain aspects of the principle influence the Service Logic.

Service Contract Coupling - Types

• Logic-to-Contract

• Contract-to-Logic

• Contract-to-Technology

• Contract-to-Implementation

• Contract-to-Functional

Service Contract Coupling

• Consumer-to-Contract

• Consumer-to-Implementation

Service Consumer Coupling

Service Contract Coupling Types

A Service created through the contract-first process will naturally result in
the service logic forming a tightly coupled relationship on the service
contract.

Tightly
coupled

The Service Contract is not coupled to the logic at all, allowing the service
logic to be replaced in the future without affecting service consumers
that have formed dependencies on the contract.

Service Contract Coupling Types

Allowing the Service Contract to be determined by the Service Logic is an
established anti-pattern that shortens the lifespan of the Service Contract and
inhibits the long-term evolution of the Service.

Tightly
coupled

Common examples of Contract-to-Logic examples are the auto-generation of
WSDL definitions using component interfaces as the basis for the contract
design, as well as the auto-generation of XML schemas from database tables
and other parts of physical data models.

Service Contract Coupling Types

A Service developed as a proprietary component can require that the service
contract exist as a proprietary extension of the service. This couples the contract
to the implementation technology which, in turn, imposes the requirement that
all service consumers support the same non-standard communications protocol.

Tightly
coupled

Making the technical service contract dependent on proprietary technology limits
the potential consumers to those who are capable of supporting the technology.

The service contract expresses
a technical interface based on a
proprietary communications
technology

The core service logic is
built with a proprietary
development technology

Service Contract Coupling Types

It’s important to prevent characteristics of the implementation environment from
becoming embedded within the Contract content. Legacy system dependencies
and database schemas for underlying systems are common pitfalls.

Contracts must not be tied to implementation characteristics, but it is relatively normal (and
appropriate) for some forms of service logic to be bound and connected to certain implementation
technologies and products beyond the core service logic. This enables the logic to effectively access
and interact with these resources.

Service Contract Coupling Types

• Parent Process Coupling
– The Service Logic and Contract can become tightly coupled

to a parent process if the service is designed to specifically
support a particular business process.

• Service-to-Consumer Coupling
– The Service Logic and Contract can become tightly coupled

and exhibit consumer-specific functional coupling if the
service is designed to support a single consumer.

Logic encapsulated by a Service should not be designed specifically in support of a
body of functionality that exists outside of the Service boundary.

Task Services typically limit their functional scope and context of a particular
business process (as opposed to the agnostic context of a Business Service) and
therefore exhibit an intentional or targeted functional coupling.

Service Contract Coupling Types
B

u
si

n
es

s
En

ti
ty

 S
er

vi
ce

s
B

u
si

n
es

s
P

ro
ce

ss

Se
rv

ic
es

Tightly
coupled

Service Contracts should be agnostic of context rather than tightly coupled to a
specific intended application.

Service Consumer Coupling Types

Consumer-to-Contract coupling is a desirable form of coupling because it achieves
the greatest amount of independence between the consumer and the service.

Though this is a desirable form of coupling, Service Contracts are designed to
minimize the degree of coupling experienced by the Consumer. Likewise, Consumers
are designed to avoid any non-essential coupling to the Service Contract.

Consumer

Loosely
coupled

Service Consumer Coupling Types

When consumers bypass the Service Contract and exploit other entry points to
the desired functionality, the future of both the Service and the Consumer are
inhibited.

With services orientation, the Service Contract is a first-class citizen and must
be the ONLY means of access to the functional responsibilities of the Service.
This was not true in many past integration architectures.

Consumer

Service Role - Abstraction

“Only publish information
about me that others

absolutely need to know”

The Abstraction principle helps to avoid the proliferation of unnecessary
service information, meta or otherwise.

Service Profile - Abstraction

Non-essential service information is abstracted.Short Definition

Service contracts only contain essential information and information about services is
limited to what is published in the service contracts.

Long
Definition

Many of the other principles emphasize the need to publish more information in the
service contract. The primary role of this principle is to keep the quantity and detail of
contract content concise and balanced and prevent unnecessary access to additional
service details.

Goals

• Services consistently abstract specific information about technology, logic, and
function away from the outside world (the world outside of the service
boundary).

• Services have contracts that concisely define interaction requirements and
constraints and other required service meta details.

• Outside of what is documented in the Service Contract, information about a
service is controlled or altogether hidden within a particular environment.

Design
Characteristics

Service Profile - Abstraction

Service

Published
Information

The service can
be invoked using
SOAP messages.

The service can
be interacted

with using SOAP
messages.

Hidden
Information

The service was
programmed with
the Java language
and the J2EE API.

The service
accesses a shared
SQL Server
database.

Services only reveal information to each other relevant to their runtime
invocation and interaction requirements.

Service
Consumer
Designer

“This is information made
available to me.”

“This is information
hidden from me.”

Service Profile - Abstraction

Service

Published
Information

GetSomething

UpdateSomething

AddSomething

DeleteSomething

Hidden
Information

All remaining service
functions, including:

Validation

Authentication

Only certain functions are exposed through the Service Contract. This limits
the extent to which a consumer program can be built to programmatically
interface and interact with the service.

Service
Consumer
Designer

“This information is part of the
published service contract and is

therefore available to me.”

“These other functions are embedded
within the underlying service logic and

are not available to me.”

Service Profile - Abstraction

Service

Published
Information

GetSomething

UpdateSomething

AddSomething

DeleteSomething

Hidden
Information

All remaining service
functions, including:

Validation

Authentication

sss

Service
Consumer
Designer

“This information is part of the
published service contract and is

therefore available to me.”

“These other functions are embedded
within the underlying service logic and

are not available to me.”

Service Role - Reusability

The Reusability principle strives to get the most possible value out of each
piece of software.

“Make my capabilities
useful for more than

one purpose.”
Service

Service Profile - Reusability

Services are reusable.Short Definition

Services contain and express agnostic logic and can be positioned as reusable
enterprise resources.

Long Definition

The goals behind Service Reusability are tied directly to some of the most strategic
objectives of service-oriented computing:

• To allow for service logic to be repeatedly leveraged over time so as to achieve an
increasingly high return on the initial investment of delivering the service.

• To increase business agility on an organizational level by enabling the rapid
fulfillment of future business automation requirements through wide-scale
service composition.

• To enable the creation of service inventories with a high percentage of agnostic
services.

Goals

• The service is defined by an agnostic functional context – the logic encapsulated
by the service is associated with a context that is sufficiently agnostic to any one
usage scenario so as to be considered reusable.

• The service logic is highly generic – the logic encapsulated by the service is
sufficiently generic, allowing it to facilitate numerous usage scenarios by different
types of service consumers.

• The service has a generic and extensible contract – the service contract is flexible
enough to process a range of input and output messages.

Design
Characteristics

Service Region Influence - Reusability
The Reusability principle can affect all parts of a Service. The Contract design,
the Message Processing Logic, and the underlying Core Service Logic can all be
shaped by a service’s reusability requirements.

Service Role - Autonomy

The Autonomy principle encourages the independence of a service
implementation.

“Give me
independence

from my
surroundings”

X

X

Service Profile - Autonomy

Services are autonomous.Short Definition

Services exercise a high level of control over their underlying runtime execution
environment.

Long Definition

• To increase a service’s runtime reliability, performance, and predictability,
especially when being reused and composed.

• To increase the amount of control a service has over its runtime environment.

By pursuing autonomous design and runtime environments, we are essentially aiming
to increase post-implementation control over the service and the service’s control
over its own execution environment.

Goals

• Services have a contract that expresses a well-defined functional boundary that
should not overlap with other services.

• Services are deployed in an environment over which they exercise a great deal
(and preferably an exclusive level) of control.

• Service instances are hosted by an environment that accommodates high
concurrency for scalability purposes.

Design
Characteristics

Service Autonomy Types

Service A

Service A encapsulates a legacy application with an existing user-base and a
point-to-point integration channel.

Service Autonomy Types

Service B

Service A, B, and C are each implemented with dedicated components, but
all three services share the same database.

Service CService A

Service Autonomy Types

Service B

Service A, B, and C are each implemented with dedicated components and
isolated database and runtime environments.

Service CService A

Service Region Influence - Autonomy
The Autonomy principle is almost exclusively focused on the service
implementation, with an emphasis on the Core Service Logic. In some situations,
the Service Contract may also be affected.

Service Role - Statelessness

The Statelessness principle encourages the incorporation of state
management deferral extensions within the Service Design so as to keep
services in a stateless condition wherever appropriate.

stateful

stateless
1

2 4

3

“Minimize the time
I remain stateful”

Service Profile - Statelessness

Services minimize statefulness.Short Definition

Services minimize resource consumption by deferring the management of state
information when necessary.

Long Definition

• To increase service scalability.
• To support the design of agnostic service logic and improve the potential for

service reuse.
Goals

What makes this somewhat of a unique principle is the fact that it is promoting a
condition of the service that is temporary in nature. Depending on the service model
and state deferral approach used, different types of design characteristics can be
implemented. Some examples include:

• Highly business process-agnostic logic so that the service is not designed to
retain state information for any specific parent business process.

• Less constrained service contracts so as to allow for the receipt and transmission
of a wider range of state data at runtime.

• Increased amounts of interpretative programming routines capable of parsing a
range of state information delivered by messages and responding to a range of
corresponding action requests.

Design
Characteristics

Service Region Influence - Statelessness
The Statelessness principle affects the Service Contract but can also directly
influence how the Core Service Logic is designed, right down to the individual
programming routines and even the core algorithms that lie beneath each
service capability.

Service Role - Discoverability

Discovery helps us determine whether the automation requirements we
need to fulfill already exist within a service inventory.

Build new
service?

Use existing
service?

Architect

Service Profile - Discoverability

Services are discoverable.Short Definition

Services are supplemented with communicative meta data by which they can be
effectively discovered and interpreted.

Long Definition

• Services are positioned as highly discoverable resources within the enterprise.
• The purpose and capabilities of each service are clearly expressed so that they

can be interpreted by humans and software programs.

Achieving these goals requires foresight and a solid understanding of the nature of
the service itself. Depending on the type of service model being designed, realizing
this principle may require both business and technical expertise.

Goals

• Service contracts are equipped with appropriate meta data that will be correctly
referenced when discovery queries are issued.

• Service contracts are further outfitted with additional meta information that
clearly communicates their purpose and capabilities to humans.

• If a service registry exists, registry records are populated with the same attention
to meta information as just described.

• If a service registry does not exist, service profile documents are authored to
supplement the service contract and to form the basis for future registry records.

Design
Characteristics

Service Region Influence - Discoverability
The Discoverability principle is focused solely on the Service Contract
documents.

Service Role - Composability

Composability introduces design considerations that ensure that services
are able to participate in multiple compositions to solve multiple larger
problems.

Allow my capabilities
to be repeatedly

combined with those
of other services.

Assembling capabilities from different sources to solve a larger problem is
the foundation of distributed computing.

+

+

+

Service Profile - Composability

Services are composable.Short Definition

Services are effective composition participants, regardless of the size and complexity
of the composition.

Long Definition

Over and beyond simply attaining reuse, service composition provides the medium
through which we can achieve what is often classified as the ultimate goal of service-
oriented computing. By establishing an enterprise comprised of solution logic
represented by an inventory of highly reusable services, we provide the means for a
large extent of future business automation requirements to be fulfilled through
composition of existing services.

Goals

In addition to the Service Reusability considerations, the following characteristics are
emphasized by this principle:

• The service needs to possess a highly efficient execution environment. More so
than being able to manage concurrency, the efficiency with which composition
members perform their individual processing should be highly tuned.

• The service contract needs to be flexible so that it can facilitate different types of
data exchange requirements for similar functions. This typically relates to the
ability of the contract to exchange the same type of data at different levels of
granularity.

Design
Characteristics

Service Region Influence - Composability
The Composability principle can influence all parts of a service primarily because
composition builds on reuse and other design characteristics established by
supporting principles.

